Central Limit Theorem (Question)

Application of the central limit theorem involving Poisson distribution.

probability
central limit theorem
poisson
Author

Wyara Moura

Published

March 1, 2023

Question

Use the central limit theorem to verify that,

\[\begin{equation*} \begin{array}{rclll} \lim\limits_{n \to \infty}e^{-n}\displaystyle\sum^{n}_{k=0}\dfrac{2n^{k}}{k!} & = & 1. \end{array} \end{equation*}\]

Answer:

Let \(X_{1}, X_{2}, \cdots\), i.i.d. with \(\sim Pois(1)\). Then, \(\mathbb{E}(X_{i}) = 1\) and \(Var(X_{1}) = 1\).

Furthermore, we know that \(S_{n} = X_{1} + X_{2} + \cdots + X_{n}\), will have \(S_{n} \sim Pois(n)\), \(\mathbb{E}(X_{i}) = n\) and \(Var(X_{1}) = n\).

Now, using the central limit theorem we get

\[\begin{equation*} \begin{array}{rclll} \displaystyle\sum^{n}_{k=0}e^{-n}\dfrac{n^{k}}{k!} & = & \displaystyle\sum^{n}_{k=0}\mathbb{P}(S_{n} = k) & = & \mathbb{P}(S_{n}\leq n) \end{array} \end{equation*}\]

in which,

\[\begin{equation*} \begin{array}{rclll} \mathbb{P}\left( \dfrac{S_{n} - n}{\sqrt{n}} \leq \dfrac{n - n}{\sqrt{n}}\right) & {\underset{n \to \infty}{\longrightarrow}} & \mathbb{P}(Z\leq 0) & = & \dfrac{1}{2} \end{array} \end{equation*}\]

\(Z \sim N(0,1)\). Therefore, the proof is done.

\[\begin{equation*} \begin{array}{rclll} \lim\limits_{n \to \infty}\displaystyle\sum^{n}_{k=0}e^{-n}\dfrac{n^{k}}{k!} & = & \dfrac{1}{2}. \end{array} \end{equation*}\]